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Very Efficient Deep Learning in loT

= Platform
= Hardware: Scalable, heterogeneous, distributed
= Accelerators: Efficiency boost by FPGA and ASIC technology
= Toolchain: Optimizing Deep Learning for loT

= Use cases
= |ndustrial loT
= Automotive = Call: H2020-1CT2020-1
*  Topic: ICT-56-2020 Next Generation Internet of Things
= Smart Home = Duration: 1. November 2020 - 31. Oktober 2023
=  Coordinator: Bielefeld University (Germany)
Overall budget: 7 996 646.25 €
= Consortium: 12 partners from 4 EU countries
u (Germany, Poland, Portugal and Sweden) and one
o pe nca ll associated country (Switzerland).
More info:

= 10 projects covering a wide range of AloT applications o httoe/ /e vediior.eu/
= Early use and evaluation of VEDLIoT technology = hilps//twilter.com/VEDLIOT

= https://www.linkedin.com/company/vedliot/



https://www.vedliot.eu/
https://twitter.com/VEDLIoT
https://www.linkedin.com/company/vedliot/
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Very Efficient Deep Learning in loT
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Cloud Computing

RECS|Box
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| aroed VEDLIOT Cognitive u.RECS t.RECS Durin
‘ loT Platform
# Sites >100K >10K 100-10K <100
ARM v8 | ‘
Footprint Custom Compact (1RU) Medium (2RU) Large (3RU)
| PowerBudget  <30W <500 W 500 W — 2 KW >2 KW |
| # Microserver max 2 upto3 upto48 up to 144 ‘

= Heterogeneous, modular, scalable microserver system
= Supporting the full spectrum of IoT from embedded over the edge towards the cloud
= Different technology concepts fFor improving

» Performance = Maintainability = Energy-Efficiency
» Cost-effectiveness = Reliability = Safety



Very Efficient Deep Learning in loT
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I I Ext. Connectors
Compute Network (up to 40 GbE)
< Management Network (kv
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, Monitoring, ...)




RECS Architecture — t.RECS

t.RECS Edge Server

= Optimized platform For
local / edge applications

* Provide interfaces for
= Video
= Camera
= Peripheral input (USB)

= Combine FPGA and
GPU acceleration

PCle expansion

Microserver #1

(COM-HPC Client)
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Microserver #2

(COM-HPC Server)

Switched PCle (Host to Host)

t.RECS

Microserver #3

(COM-HPC Client)

1/O (Camera, Display, Radar/Lidar, Audio)

External interfaces

= Compact dimensions

1 RU, E-ATX form factor
(2 RU/ 3 RU for special cases)




RECS Architecture — u.RECS VEDL i

U.RECS AloT Server
= Supports ML acceleration L RECS
" FPGA Microserver #1 Microserver #2
= ASIC
. . . (SMARC 2.1) (Jetson NX) Front
= Communication interfaces Panel
= Wired (CAN, Ethernet, CSI) 2x
= Wireless (WLAN, LoRa, 5Q) HbMI
4x
= Sensors - USB 3.1
= Camera (M.2) i 2ole i RI45/
= Environment (Temp./Hum.) < /O (Camera, WiFi, LoRa, 4G/5G) > SPE
= Housekeeping

* Embedded Device

(~ 20x20x6 cm)




Microserver overview VEDL e:.

t.RECS RECS|Box
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} COM Express

i COM Express
. ARM v8 Server SoC

COM Express
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Peak Performance of DL Accelerators VEDL

Very Efficient Deep Learning in loT

= Peak performance values of specialized accelerators, provided by the vendors
(precisions varying from INT8 to FP32)

Performance [GOPS]
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Yolo v4 accelerator performance VEDL e:.

Very Efficient Deep Lea

= Performance of Yolo v4 for different hardware platform has been evaluated
= Performance measurement for other networks (Resnet, EfficientNet) available as well
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Microserver Standardization - COM-HPC

VEDLle:.

Very Efficient De

COM+HPC

/ \
- PICMG/ o O] ©
* Large, open consortium % t ] = 2| _
e : =T ) as |Ws | ¢
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W= o
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Microserver Standardization - COM-HPC
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Reconfigurable DL accelerators

VEDLIoT accelerators support a large variety

of reconfigurable architectures
=  From small embedded FPGAs to large ACAPs

Large design space for FPGA-based accelerators

Dynamic hardware reconfiguration
= Adapt to changing requirements at run-time

= Change characteristics of DL-accelerator
=  Trade-off between

power and performance, power and accuracy, etc.

Inference and training on FPGA

= Supports quantization from int8 to float32
= DL and Deep Reinforcement Learning

Performance [GOPS])
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DPU-based ML Inference on SMARC with Xilinx UltraScale+ XCZU4EG

® Yolov4
i 82304_300_2T1 ® B4096_1T pa0e-21
+ MobileNetV2 _500_
¢ e B3136_1T B3136_2T
® B2304_300_1T
e B2304_200_2T
® B2304_200_1T
¢ BS122.2T B2304_300_4T
B512x1_2T B3136 4T
P -
° ® B512x2_1T & & ¢ B4096_4T
B512x1 1T + B2304_200_4T -
- ¢ B512x2_4T
¢ B512x1_4T
B2304_200_17 / B2304.300_1T
“ ¢ * B4096_1T
A 4 4 BS512x2_1T B3136_1T
B512x1_1T
6 7 8 9 10 11 12 13 14 15 16
Power [Watt]
Accelerator A : — - [
1/0 Interfaces Clk , Xilinx/ LiteX
: Memory Ctrl :
_________
Platform Mgmt, S
System Funct. & 3
Configuration
Yolov4a || !
& joctrl |
i3 [
“HBl © | Eesssses '
3 --------- [
|
Dual Arm {
Cortex-R5 Accelerator B HDMI :
DFX PRRegion| | | {
""""" t
Dual/Quad Arm ¢% Interrupt :
Cortex-AS53 Controller (a] [
!
|
Processing System V FPGA-FabricI e
SoC

13



DL accelerator co-design VEDL i

Very Efficient Deep Learning in loT

Monolithic design
e One engine computes
all the core layers

SEML
e One engine computes all
layers of the same type [~ ~"°° ,
e PW engine, DW engine || wemoy

i Memory

SESL
e« One engine per layer |
e E.g.FINN

FiBHA
e SESL +SEML

L
1 L S S R I ELCEC o= oc oo ocococcfoooerooeoreee oy e oo '
'

Programmable Logic (PL)

...........................................................................................................................................................................................................

"FiBHA: Fixed Budget Hybrid CNN Accelerator”, Fareed Qararyah, Muhammad Wagar Azhar, Pedro Trancoso, IEEE 34th International Symposium on Computer Architecture and High-
Performance Computing (SBAC-PAD 2022), Bordeaux, France, November 2-5 2022
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Security VEDI— =2

Very Efficient De

=  WebAssembly runtime + Trusted Execution Environment
= Security for edge (and cloud) devices

= Advances on attestation
= Better support for edge devices
= Distributed (Byzantine fault-tolerant) attestation and configuration service

= Secure loT Gateway

= Common environment for running distributed applications Pﬂ :TI

loT Bridge 10 /50 / 100

" QTEE(safe) | TWINE F:\

: = - -

, : . I WASM system AX g —

i Sandbox [WASM I T |interface (WASI)

'| WASM runtime : l '\

| : ecure

: ; O . ; —> IoTSGateway
| ! perating system Cloud

: T

_________________________ I Hardware
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Safety and Robustness

R=NO

W TM

Simulation platform for ML accelerators
RISC-V SoCs and Custom Function Units
Improve test and verification
Co-simulate Verilog blocks
Used in Google's CFU Playground

Continuous integration based in Gitlab and Google Cloud
Platform

16



A compositional architecture framework for AloT VEDLle:.

Very Efficient Deep Learning in loT

Logical Behaviour| . AlDesign | . Hardware | | Communication | 'Quality Concerns |
3 ‘ ! High Level - - Quality Goal
' o . i ; : ! . igh Leve ! ; 5 ; uality Goals
Knowledge creation (e.g. (2 3 Function — High Level Al 10 o L] Hardware — Interfaces mmmmmmm  (e.g. Safety
s c 9 Components | ; Model ; - . ; ; ; :
definition of safety goals). s . : Architecture | | ! : 5 Goals)

s
Concept design (e.g. g-?’i Logical : : ’ | system Hardware | 5 ’ | | Quality Concept
introduction of redundancy g 2! Com gonents M A| model concept (¥ = u & yArchitecture e Node connectivity mmmmmmn (e.g. Functional
to Fulfil safety goals). § = P ’ ' ’ ‘ L ‘ | Safety Concept)
o
Final design (e.g. assigning | < _ Computin : . : : . [ Quality Rea- |
functions to independent % g ressgurceg _: : Al de.ployment I n I I Components _: : ReSOUI:C.e _: : lisation (é/g Tech
processors to guarantee 8 3 allocation ; i| configuration |: | Architecture connectivity ! ; Safety C;)r;cept)- :
redundancy). g
Monitori t g : - : : : i :
onitoring concept | £ 5! . Performance / |: 5 — | i |Quality Monitoring | :
definition (e.g. monitoring '; > 5::3,(\;'33; — Certainty REEE mmﬁ:‘e — Coﬂgﬂgﬁﬁtlon me——  (c.g. Safety '
Fulfilment of safety goals at |2 " P Monitoring ' : I 5 E 9 : ! Monitors)
run-time). =




Use case: Aul:omol:lve VEDL e:.

Very Efficient Deep Lea

General server

sensor Edge computer

Dedicated server

= Focus on collision detection/avoidance scenario

= Improve performance/cost ratio — Al processing hardware Challenge:
distributed over the entire chain Distribution

of work

18



Use case: Industrial loT - drive condition classification VEDL [g:.

Very E fFicien

= Control applications need DL-based condition classification LChallenge:/
ow-power
= On the edge device for low power consumption Efficienc

= Suggestions for control and maintenance

Edge devices with Al for sensing

communication and detection of complex
states for local safety and control
applications

= DL methods on all communication layers
= DL in a distributed architecture
= Dynamically configured systems

On / Off detection without
motor current or voltage
Cooling fault detection

= Bearing fault detection

= Sensored testbench with 2 motors

= Acceleration, Magnetic field, Temperature,
IR-Cam (temperature), Current-Sensors, Torque

19



Use case: Industrial 1oT - Arc detection VEDL i

Very Efficient Deep Learning in loT

= Al based pattern recognition for different local sensor data
= current, magnetic field, vibration, temperature, low resolution infrared picture

= Safety critical nature

= response time should be <10ms
= Al based or Al supported decision made by the sensor node itself or by a local part of the sensor

network

Magnetic Field
sensor
Vibration,
Temperature

IR-Camera

Spec|f ications:
Industrial temperature range (-20°C ... +85°C)
+ Industrial batteries (rechargeable for ID-Tag)

- IP65 protection .
- RoHS and IEC 61850-3 complaint Challen ge:

- Pre-certified wireless transceivers
« Target price: 100€ (ID-Tag) ACCU ra Cy
- SIM on Chip*

Combining the information from the IR-Camera and the magnetic field sensor to
localize electric faults in power cabinets by deep learning methods

20



Use case: Smart Mirror — Neural Networks VEDL i

Very Efficient Deep Learning in loT

= Face recognition
= Mobilenet SSD trained on WIDERFACE dataset

= Object detection
= YoloV3, Efficient-Net, yoloV4-tiny

= Gesture detection
= YoloV4-tiny with 3 Yolo layers (usually: 2 layers)

= Speech recognition
= Mozilla DeepSpeech

= Al Art: Style-Gan trained on works of arts
= Collect usage data in situation memory

Challenge:
Data privacy,

Efficiency

21



Use case: Open calls

AccBD
Biomarker discovery

/DUNE RCO

Al_RIDE

Driving school a5 \
/ > : ‘ \

5G federated learning

BEAM_IDL \é
Laser welding %

FLEDGED
Al for Wearables

, T
ndoor localization \>% ':1"
/Honey.Al

Pollen analysis

Edgediwelli
Smart mirror

VEDLle:.

Very Efficient Deep Lea

Mushroom harvesting

Power Edge RL
Al for power electronics

22



Summary - Standardization in VEDLIoT VEDLle:.

= Hardware/microserver form factors

= Active contribution to PICMG Standards COM-HPC and COM Express
(https://www.picmg.org/openstandards/com-hpc)

= Several Open Source contributions to large projects (https://vedliot.eu/open-source-software)
= Renode + Kenning — Emulator and Simulator for distributed loT, Verilator support

= Memory Protection for RISC-V: RISC-V PMP

= TEEs support for WebAssembly: Integation for Trustzone (ARM) and SGX (Intel) into WebAssembly

« Recommendations: Design framework loT and Al
=  Compositional architecture framework for AloT developled within VEDLIoOT

= Can help system design to comply with regulatory constraints (e.g. EU Al Act)

23


https://www.picmg.org/openstandards/com-hpc
https://vedliot.eu/open-source-software

Contact

Jens Hagemeyer, Carola Haumann
Bielefeld University, Germany
chaumann@cor-lab.uni-bielefeld.de
jhagemey@cit-ec.uni-bielefeld.de

VEDLle:.

Very Efficient Deep Lea

Thank you for your attention.

The VEDLIOT project has received funding
from the European Union’s Horizon 2020
research and innovation programme

under grant agreement No 957197
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