

#### NG-IoT Workshop on Standardization

#### VEDLIOT Overview and Standardization activities

Jens Hagemeyer Bielefeld University



The VEDLIoT project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957197

# Very Efficient Deep Learning for IoT – VEDLIoT



#### Platform

- Hardware: Scalable, heterogeneous, distributed
- Accelerators: Efficiency boost by FPGA and ASIC technology
- Toolchain: Optimizing Deep Learning for IoT

#### Use cases

- Industrial IoT
- Automotive
- Smart Home

#### Open call

- 10 projects covering a wide range of AIoT applications
- Early use and evaluation of VEDLIoT technology



- Call: H2020-ICT2020-1
- Topic: ICT-56-2020 Next Generation Internet of Things
- Duration: 1. November 2020 31. Oktober 2023
- Coordinator: Bielefeld University (Germany)
- **Overall budget:** 7 996 646.25 €
- Consortium: 12 partners from 4 EU countries (Germany, Poland, Portugal and Sweden) and one associated country (Switzerland).

#### More info:

- ⇒ <u>https://www.vedliot.eu/</u>
- ⇒ <u>https://twitter.com/VEDLIoT</u>
- ⇒ <u>https://www.linkedin.com/company/vedliot/</u>

## **Big Picture**





## **VEDLIOT Hardware Platform**





| Lo                 | west Latenc | Υ                   |                     | Com                 | puting Driven |
|--------------------|-------------|---------------------|---------------------|---------------------|---------------|
| Far Edge Computing |             | Near Edge Computing |                     | Cloud Computing     |               |
| u.RECS             |             | t.RECS              | RECS   Box<br>Durin | RECS   Box<br>Deneb |               |
| # Sites            | >100K       | >10K                | •                   | 100-10K             | <100          |
| Footprint          | Custom      | Compact (1RU)       |                     | Medium (2RU)        | Large (3RU)   |
| Power Budget       | <30 W       | < 500 W             |                     | 500 W – 2 KW        | > 2 KW        |
| # Microserver      | max 2       | up to 3             |                     | up to 48            | up to 144     |

- Heterogeneous, modular, scalable microserver system
- Supporting the full spectrum of IoT from embedded over the edge towards the cloud
- Different technology concepts for improving
  - Performance
  - Cost-effectiveness
- Maintainability
- Reliability

- Energy-Efficiency
- Safety

## **RECS Architecture** – RECS|BOX









## **RECS Architecture – t.RECS**



#### t.RECS Edge Server

- Optimized platform for local / edge applications
- Provide interfaces for
  - Video
  - Camera
  - Peripheral input (USB)
- Combine FPGA and GPU acceleration
- Compact dimensions
  1 RU, E-ATX form factor
  (2 RU/ 3 RU for special cases)





## **RECS Architecture – u.RECS**

#### u.RECS AloT Server

- Supports ML acceleration
  - FPGA
  - ASIC
- Communication interfaces
  - Wired (CAN, Ethernet, CSI)
  - Wireless (WLAN, LoRa, 5G)
- Sensors
  - Camera
  - Environment (Temp./Hum.)
  - Housekeeping
- Embedded Device
  - (~ 20x20x6 cm)







### **Microserver overview**





## **Peak Performance of DL Accelerators**



 Peak performance values of specialized accelerators, provided by the vendors (precisions varying from INT8 to FP32)



#### Yolo v4 accelerator performance



- Performance of Yolo v4 for different hardware platform has been evaluated
- Performance measurement for other networks (Resnet, EfficientNet) available as well



## Microserver Standardization – COM-HPC

PICMG





- Large, open consortium
- Specification final and released
- Driven by industry requirements

| COM-HPC Client                 | COM-HPC Server      |  |
|--------------------------------|---------------------|--|
| 49x PCle                       | 65x PCIe            |  |
| 2x MIPI-CSI                    |                     |  |
| 2x 25GbE KR                    | 8x 25GbE KR         |  |
| 3x DDI                         |                     |  |
| 2x BaseT (up to 10 Gb)         |                     |  |
| 2x SoundWire, I <sup>2</sup> S | BaseT (up to 10 Gb) |  |
|                                | 2x USB4             |  |
| 4x 0364                        | 2x USB3.2           |  |
| 4x USB2.0                      | 4x USB2.0           |  |
| 2x SATA                        | 2x SATA             |  |
| eSPI, 2x SPI, SMB              | eSPI, 2x SPI, SMB   |  |
| 2x I <sup>2</sup> C, 2x UART   | 2x I2C, 2x UART     |  |
| 12x GPIO                       | 12x GPIO            |  |



#### Microserver Standardization – COM-HPC

- Large, open consortium
- PICMG
- Specification final and released
- Driven by industry requirements

| COM-HPC Client                 | COM-HPC Server      |  |
|--------------------------------|---------------------|--|
| 49x PCle                       | 65x PCIe            |  |
| 2x MIPI-CSI                    |                     |  |
| 2x 25GbE KR                    | 8x 25GbE KR         |  |
| 3x DDI                         |                     |  |
| 2x BaseT (up to 10 Gb)         |                     |  |
| 2x SoundWire, I <sup>2</sup> S | BaseT (up to 10 Gb) |  |
|                                | 2x USB4             |  |
| 48 0564                        | 2x USB3.2           |  |
| 4x USB2.0                      | 4x USB2.0           |  |
| 2x SATA                        | 2x SATA             |  |
| eSPI, 2x SPI, SMB              | eSPI, 2x SPI, SMB   |  |
| 2x I <sup>2</sup> C, 2x UART   | 2x I2C, 2x UART     |  |
| 12x GPIO                       | 12x GPIO            |  |







## **Reconfigurable DL accelerators**





#### VEDLIOT accelerators support a large variety of reconfigurable architectures

- From small embedded FPGAs to large ACAPs
- Large design space for FPGA-based accelerators
- Dynamic hardware reconfiguration
  - Adapt to changing requirements at run-time
  - Change characteristics of DL-accelerator
  - Trade-off between power and performance, power and accuracy, etc.
- Inference and training on FPGA
  - Supports quantization from int8 to float32
  - DL and Deep Reinforcement Learning



#### DPU-based ML Inference on SMARC with Xilinx UltraScale+ XCZU4EG

# DL accelerator co-design





"FiBHA: Fixed Budget Hybrid CNN Accelerator", Fareed Qararyah, Muhammad Waqar Azhar, Pedro Trancoso, IEEE 34th International Symposium on Computer Architecture and High-Performance Computing (SBAC-PAD 2022), Bordeaux, France, November 2–5 2022

## Security

- Common environment for running distributed applications
  - WebAssembly runtime + Trusted Execution Environment
  - Security for edge (and cloud) devices
- Advances on attestation
  - Better support for edge devices
  - Distributed (Byzantine fault-tolerant) attestation and configuration service
- Secure IoT Gateway









## Safety and Robustness





#### Simulation platform for ML accelerators

- RISC-V SoCs and Custom Function Units
- Improve test and verification
- Co-simulate Verilog blocks
- Used in Google's CFU Playground
- Continuous integration based in Gitlab and Google Cloud Platform

# A compositional architecture framework for AIoT VEDL

Solution

Space



#### Use case: Automotive







- Focus on collision detection/avoidance scenario
- Improve performance/cost ratio AI processing hardware distributed over the entire chain





- DL methods on all communication layers
- Sensored testbench with 2 motors

## Use case: Industrial IoT – Arc detection



- AI based pattern recognition for different local sensor data
  - current, magnetic field, vibration, temperature, low resolution infrared picture
- Safety critical nature
  - response time should be <10ms</li>
  - AI based or AI supported decision made by the sensor node itself or by a local part of the sensor network



# Use case: Smart Mirror – Neural Networks

- Face recognition
  - Mobilenet SSD trained on WIDERFACE dataset
- Object detection
  - YoloV3, Efficient-Net, yoloV4-tiny
- Gesture detection
  - YoloV4-tiny with 3 Yolo layers (usually: 2 layers)
- Speech recognition
  - Mozilla DeepSpeech
- AI Art: Style-Gan trained on works of arts
- Collect usage data in situation memory







#### Use case: Open calls





## Summary – Standardization in VEDLIoT



- Hardware/microserver form factors
  - Active contribution to PICMG Standards COM-HPC and COM Express (https://www.picmg.org/openstandards/com-hpc)
- Several Open Source contributions to large projects (<u>https://vedliot.eu/open-source-software</u>)
  - Renode + Kenning Emulator and Simulator for distributed IoT, Verilator support
  - Memory Protection for RISC-V: RISC-V PMP
  - TEEs support for WebAssembly: Integation for Trustzone (ARM) and SGX (Intel) into WebAssembly
- Recommendations: Design framework IoT and AI
  - Compositional architecture framework for AIoT developled within VEDLIoT
  - Can help system design to comply with regulatory constraints (e.g. EU AI Act)





#### Thank you for your attention.



The VEDLIOT project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 957197

unine

UNIVERSITÉ DE NEUCHÂTEL







veoneer

Contact

#### Jens Hagemeyer, Carola Haumann

Bielefeld University, Germany chaumann@cor-lab.uni-bielefeld.de jhagemey@cit-ec.uni-bielefeld.de

**C**CHRISTMANN









